
CIRCULATION COPY
SUBJECT TO RECALL

IN TWO WEEKS
~cID. 18513

A JOINT GAUSSIAN PROBABILITY PLOT PROGRAM

S. G. Azevedo
D. T. Gavel

January 1980



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.  Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California.  The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN  37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA  22161



ABSTRACT

*

The analysis of joint-Gaussian distributions of two variables can be

. aided greatly by meaningful graphical techniques. The program described

by this report performs such a task. Two elliptical equi-probability

contour plots of the probability density function are produced; one using

statistics from the raw data and the other using normalized (zero mean,

unit variance) variables. Several separate data sets of the same

variables may be plotted, for example, to compare estimators. The

techniques discussed here for interpreting the plots enable the user to

gain insight into the statistical information being displayed.

8

.
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1. INTRODUCTION

Analysis of errors in measurements, estimates, parameters, etc., is

frequently encountered in engineering applications.

the Central Limit Theorem [1], many of these errors

be assumed to have normal (Gaussian) distributions.

By virtue of

can reasonably

In order to

ease the burden of numerical error analysis, graphical methods of

displaying the important statistical information have been

developed.[2] This report describes such a method for the

two-dimensional Gaussian vector case.

When confronted with a single Gaussian-distributed random variable,

it is not difficult to draw or visualize the probability density

function (pdf) given the mean and standard deviation. This allows

easy computation of confidence intervals or probability intervals

as is done often in sample statistics. However, with bivariate

Gaussian random variables, the pdf becomes projected in three-space

and the statistical properties are much less intuitively obvious.

We now become concerned with covariance and correlation [1], in

addition to the properties of the individual random variables.

The computer program described in this report, ECP2D, presents a

meaningful way of displaying these joint distributions. This is

done by plotting contours of constant probability density which
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have certain user-specified probability of containment within the

contour. In this way, the important information from the three

dimensional probability density surface is projected onto a planar

coordinate system as is done with topographical maps.
.

In our case,

we are concerned only with Gaussian distributions, so these .

contours are all elliptical in shape.[3] The projection is shown

in Figure 1.

If many separate experiments or trials each produce statistics

describing the joint pdf of two random variables, the contours of

each trial may be displayed on one plot for comparison. This

comparison provides the motivation for development of the ECP2D

program. The ellipses produced can be a means of ascertaining

performance of one parameter estimator over another. However,

the

it

is sufficiently general to be applicable to any bivariate Gaussian

random vectors.

Automatic scaling of the plot, and differences in units of the

axes can cause distortion in the size and orientation of the

contours, so an alternative graphing method showing normalized

was also developed. This provides much more information about

correlation of the two random variables.

two

data

the
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FIGURE i : ELLIPTICAL CONTOURS OF THE

JOINT DENSITY FUNCTION IN

(X,.X2)
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In this report, we discuss:

● Contour Plotting Theory

● Program Usage

● Interpretation of the Output

.
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11. THEORY

●

In this section, we develop the theory behind plotting an ellipse

of constant probability density. The fundamental problem can be

stated as:

Given the mean and the covariance matrix of a joint

Gaussian random vector in two-space, find an

equi-probability elliptical contour such that the

probability of containment within the ellipse is some

value, P
A“

In order to solve this problem we:

1)

2)

3)

4)

5)

Show that a constant probability contour for a Gaussian pdf is

an ellipse;

Transform the ellipse to the origin;

Normalize the axes (circle);

Reconstruct the original (~-plane) ellipse for the calculated

value of PA; and

Calculate size of the ellipse.

After plotting this ellipse, a

displaying correlation between

second plot is

the two random

also generated for

variables.
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11-1. Ellipse Equation

With the assumption of Gaussian random variables (call them

xl and X2), the joint probability density function is

P(x,+ =+ exp
[
-v2(x-llx)T @(5-&x)

21Tlq
—— 1 (1)

-[1‘1
where x = = Gaussian random vector

‘2

‘tl=[:J=meanval
[1Cll c12

~. = covariance matrix

C21 C22

that is Cij = E[(xi-vi) (Xj-vj)] for i,j = 1,2

‘0c12= C21 “

.
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8

.

b

Making p(x1,x2) a constant and solving for the quadratic

form in (1) we obtain:

(X-~x)T ~-’(yyx) = b2-—

Expanding (2) we have the equation

b2
MxpJl)2 + Pb*-L@ 2 +Y(xpll) (X*-U*) =

C*2
where a =

C11C22 - C;*

Cll
P= 2

C11C22 -cl*

*C,*

y==

and b = scalar constant.

The matrix~is constrained to be positive definite [4]

because it is a covariance matrix. This constraint causes

(2)

(2) to be the equation for an ellipse in thex_ plane. The

constant b is related to the total probability distributed

within the ellipse, pA, (to be shown in Section II-5). We

will assume that b is an arbitrary constant for now and

explain the procedure for locating and plotting the ellipse

defined by equation (2).
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11-2. Rotation and Translation of the Ellipse

To simplify the computation of the ellipse equations, we can

perform a similarity transformation upon the ~matrix. We

constrain the transformed matrix to be diagonal which merely

rotates the coordinate axes to align with the major and minor

axes of the ellipse. Then subtracting the mean vector from x

translates the center of the ellipse to the origin (see

Figure 2).

The transformation we wish to make is:

[1Y,

where ~ = I I= the transformed variable

and S is

Then from equations (2) and (3),

MY2

the transformation matrix.

(3)

(4)

.
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X2 q Y2 =Y’

fa

\ .“
\ .- e

P2 ‘-- ;:’#t<”------
I

lJ-pbne # ““” I ‘
I ‘\

Original EllipseIn ~-plane
—— —. ———

y - plane

‘+
d2 b- ---

4

Y\
~b

Translated and Rototedto the y-plan.
——— ——— — ~—

)- -

[1dOz=~’yt~= 0’ d
2

22

+

b

g-plona

q

Normalizedto the g-plane (cirole)
.—— —— —.—

FIGURE 2: TRANSFORMATIONS OF THE ELLIPSE
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where D=

m .

~2
10

1

=? __“ c S-T
o d:

Notice that df and d; are the variances with

respect to the ~-coordinate system. Equation (4) can be

written alternatively as:

so that (ball)and (bd2) are the major and minor axes of

the translated-rotated

In order for the joint

ellipse (see Figure 2).

probability density function to remain

the same throughout this transformation, Qand ~must be

similar matrices [3] (~ =~-’)o Under a similarity

transformation, the determinant and eigenvalues are

unchanged. Since! is a symmetric matrix, this similarity

transformation specializes to an orthogonal transformation
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where ST = S-l. An >matrix which satisfies these—-

conditions is:

‘Cose -sine

1
LsinO

where 9 is the angle

~-coordinate plane.

derive that [3] (see

(5)

COS6J

of rotation of the $-axes from the

Now, from this transformation we can

Appendix B for details)

2
‘1 Cll + C22 ~ (c,, - C2*)2 + 4(c12)2

d2
‘~

21

[12C,2e= 1/2 tan-l
Cll - C22

Normalization of the Ellipse

With a second transformation, we can easily normalize to a

circle of radius b (see Figure 2). The reasons for doing

this will become apparent later. We set

(6)

(7)

(8)
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-[1‘1where z = = the transformed vector

‘2

[1‘1 0
and ~= ~

‘2

Then from equations (4) and (8),

(Tz)T Q-’(Tz) = b2— —

~T(~TQ-’T)z = b2.—

But by the definitions, TTD-lT . ~ (identity matrix) so———

we obtain the circle equation (Figure 2)

T ~2Zz=——

(9) .

(lo)

or Z;+z;= b2
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8

.

.

11-4.

11-5.

Reconstruct Original Ellipse

Now, given the points Z1 and Z2 which satisfy this

equation, we can easily reconstruct the ~ vector using

equations (2) and (8) which give:

x= sTJ+~x (11)

This now illustrates the simple way in which ECP2D calculates

the plot points for an ellipse. First, an array of

coordinate pairs representing the solution to equation (10)

is established. Then, by determining d1,d2, and 0, the

points of the unit circle can be projected back to the

~-plane (Figure 2) with the transformation given in equation

(11). We must be careful however that e is in the correct

quadrant for valid reconstruction.

Calculate Size of Ellipse (determine b)

Our problem of calculating the ntegrated probab lity within

the ellipse, (X-PX)l C_-l(~-~x)= bz, has now been simplified—-
n

to computing the probability within the circle Ztz = bc. To find——

this probability, PA (and the corresponding value of b), we

integrate the joint probability density function over the
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area of the circle. This can be shown by starting from

equation (1) and integrating in the x space:

pA = II 1

[

-1/2 (x-p )T g-’ (X-yx)
F ‘Xp -‘x 1dx1dx2 (12) -

A

where A is the interior area of the

.

ellipse defined by

(WJX)T~-’ofyx, = b2——

Now, from the definitions of~ and S by the transformations

described earlier,

~
-1

or .>-TI-TI-l>-l (13)

But, also from equation (11),

(x+x) =--- (14)

So, substituting (13), (14), and (15) into (12) we get

PA = 1,+ ‘xp[-1’2~T4dxldx2

(15)

(16)
.
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The next step is to change the variables of integration so that

we integrate over the z-space. The formulator this is [6]:

ax,

q

ax2

azl

.

It is easy to show, using Equation (14), that

Illdax=
az

~1/2

so,

(17)

(18)

The integration area, A, is the area inside the circle, ZTZ.—
~2=0 For easy integration, we can convert to polar coordinates:

bn

‘A =
J!

~ exp (-1/2r2) rdqdr

r=O q=-m

(19)
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where r = radial distance
‘m

-1

()

‘2
9 = angle from zl-axis = tan ~

1

Performing the integration we arrive at

-~b2

‘A= 1 - e

then solving for b2

b2
= -2Ln (l-PA)

If we wish, for example, to plot the ellipse within which 95%

of the &values can be expected to lie, we use equation (2)

with b2 set equal to

b2 = -2En (l-.95) = 5.99

When b = 1,2, or 3, we encounter the often used one-, two- or

three-sigma probability contours [3,5] (see Table I).
.

.
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Table I: b-Sigma Probability Distribution Values

1

b PA

1 .394

2 .865

Correlation Plot

In an effort to obtain more visual information from the data,

we present a second contour plot we call a correlation plot.

For this plot, another transformation is performed to a

coordinate system where the variance in both directions is

normalized to 1. We merely show here

is implemented, and present later the

how the transformation

interpretation of the graph.

The elliptical plot produced in the previous sections

graphically illustrates a contour of particular likelihood

for the vector ~. But what if the units or.the orders

magnitude of the two varibles, xl and X2, are vastly

different? We may still wish to see the first plot of

of

the

original two-space ellipse, but distortion caused by scaling

may give misleading information with resoect to correlation

or dependence of the two random variables.
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For that reason, a second plot is created which gives

normalized information for a better display of the

comparisons between x, and X2. This is performed by the

following transformation.

x* = ~ (x-px)——

_ll ‘1

where x* = * = the normalized vector

L]‘2

and N is the normalization matrix.—

Then from equation (2)

or ———

or (X1*)2 + (X2*)2 - 2px,*x2* = bz(l-pz)

where

Hlp = NCNT =~= ~ , — Correlation matrix

(21)

(22)

.

C12 = Correlation coefficient

“w
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so by algebraic manipulation

[

1

rCll

o

0

1

rC22 I
This gives us a new Gaussian random vector, ~*, (see Figure

3), with zero mean and unit variance. The plot of the

contour in the x*-space gives us an indication of the

correlation of the original vector, x. An explanation on how—

to interpret this data is given in the next section.

.
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FIGURE 3: TRANSFORMATION To CORRELATIONPLOT
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.

111. PROGRAM EXECUTION

This section explains the usage of ECP2D and how to interpret the

output. A general flow diagram of the program is shown in Figure 4.

Also presented is a sample application involving estimation schemes.

111-1. User Options

The program has been designed for ease and flexibility of

use. Several possible

user for producing the

For a b

mean ~x

input options are available to the

output desired.

variate normal-y distributed random ”vectorx with

and covariance matrix~, let ~(l),x_(2),....~(N)

be a set of data. Many such data sets may be processed and

plotted for either of two cases:

1) Tbedata~(l),~(2) ,...,~(N) is preprocessed (i.e.,

~x and! are known, or estimates of ~x and!

are available)

to the program

positive defin

and then only ~x and C are inputted

for each data set. The~ matrix must

te.

be

2) The raw data &(l),~(2),...,&(N) is inputted for each

data set.
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2

LOOP FOR
EACH DATA SET

!

PREPROCESSED

G’READ
X,oq

VALUES

c=’OUTPUT
DATA SET

INFORMATION

I
I

LOOP FOR

rl

COMPUTE
EACH PROBABILITY ELUPSE

PLOTTED CURVE

I

+
I 1

lPL0TN0Rh4Au2E0 I

1ELUPSESt)f”s~-)I1

bDONE

.

.

FIGURE 4: GENERAL FLOW CHART OF ECP2 D
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Up to ten different ellipses, corresponding

probability values, may be plotted for each——

to ten

data set on the

same graph. In addition, any constant coordinate pair

(labelled ‘ltrue, x2true) can be plotted for comparison.

III-2. Input File Format

The input file for ECP2D must be present on the disc at the

start of execution and must be named ECPIN. This file

allows the user to specify certain plot options as well as

the problem parameters. Table 11 gives a description of

each field in the input file. Table 111 lists the input

fields and their corresponding formats. Notice that lines

four and five are repeated for each of the data sets to be

input.

III-3. Sample Input for ECP2D

An application of this plotting program is to compare the

performance of several estimation schemes for identifying

some constant parameters (e1,02) of an arbitrary

mathematical system. For this problem:

1) Each data set corresponds to N trials of an estimation

scheme.
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Table II: Input File Field Description

Line 1 General Parameters for Plot

M- Number of data sets to be input

L Number of contours to draw for each data set

LBLX - Label for the xl-axis of the plot

LBLY - Label for the x2-axis of the plot

Line 2 True Value of the Vector x

.

.

ITFLAG - Do you know the true value of both xl and
x2? ( ~= NO, 1 = YES)

XIT - True value of xl (if known)

x2T - True value of x2 (if known)

Line 3 Probability Values for the Plot

PR(l), ..... PR(L) - Probability values for each contour
(must be between O and 1)

REPEAT THE FOLLOWING LINES FOR EACH DATA SET (M times)

Line 4

Line 5

Data Set Input Parameters

MP - Is input (for this data set) raw data or
preprocessed? (0= Raw, 1 = Preprocessed)

N Number of data points (if MP = 0)

Data Set Input

IfMP = O:

X1(1),X2(1), ..... Xl(N), X2(N) - Raw Data Points;
~(l), ....1(N)

IfMP=l:

XE1,XE2 - Mean Values of xl and x2

P11,P22 - Variance of xl and x2

P12 - Covariance of xl and x2
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Table III: Format of Input File

Line Variable Name

1 M,L,LBLX,LBLY

2 ITFLAG,X1T,X2T

3 PR(l),.....PR(L)

4 MP,N

5 IfMP=O X1(1),X2(1),..0X1(N),X2(N)
IfMP=l XE1,XE2,P11,P22,P12

Format

(2I5,2A1O)

(12,2E16.7)

(1oF6.4)

(12,15) ‘

(2E16.7)
(5E16.7)
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2, Ii(l),...,_i -[1x (N) are estimates of 6 = el(32T

for each set i, and the sample mean and covariance

are used to approximate the (&x)i and ~io

3) The true (known) value of ~ is plotted as ~true.

The input file for this application, with two estimators

(data sets), is shown in Table IV. The data shown in lines

4-14 and lines 15-16 can be thought of as estimated values

of parameters 01 and e2 from two different estimation

schemes. Notice that the first data set is in raw form

with N=1O and the second data set is given in “pre-

processed” form. A discussion of the output is given in

the next section.

III-4. Sample Problem

The standard output obtained from ECP2D is shown in Figures

5 through 7. Figure 5 gives pertinent self-explanatory

numeric information with regard to the pl”ots. The

probability values used are the one-sigma, two-sigma, and

three-sigma values for a two-dimensional Gaussian random

.
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Table IV: Example Problem Input File

Line #

i
2,3,TH~A 1 THETA 2
1,1.E-08,5.E-07,
.394,.865,.9S9,

i

!

0,10,
1.003760E-08,4.8368E-%7,
1.004390E-08,4 .8295E-07,

8

1.W5415E-08,4 .8183E-07,
1.005429E-08,4 .8174E-07,

1!

1.005456E-08,4.8181E-07,
1.005590E-08,4 .8172E-07,

12
1.005790E-08,4.8165E-07.

{i

1.005174E-0B,4 .8209E-07,
1.004282E-08,4 .8309E-67,
1.005730E-08 ,4.81S6E-97,

15 l:39E-09,5.04E-07,7.E-23,8.E-19,5.E-21,

.

.
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vector. The angle of the major axis of the ellipse from

the xl axis (between -90” and +90°) is calculated and

displayed along with the diagonalized variances (d~ and

d2z; the eigenvalues of!). Also, the correlation

coefficient (p) is shown; if p = 1, we have maximum

correlation between xl and x2, if p = -1 we have

maximum negative correlation, and if p = O we have no

correlation between the two variables.

In Figure 6, the plots of the two data sets are displayed.

The size of the two contours gives an indication of the

relative precision of each estimator; i.e., the curves for

data set A are smaller than those for data set B, so

estimator A is more precise in its estimate. Accuracy of

the estimators, on the other hand, can be observed by the

relative distance of mean value points from the true value

(the large black dot). This is called the bias of the

estimator and it indicates low accuracy when the bias is

large. Notice in Figure 6 that although estimator A

produces more precise estimates than B, there is also a

larger bias in the A estimates indicating less accuracy.

Note, also, that the apparent angle of rotation of the

ellipses does not correspond to that reported on Figure 5.

This is due to the distortion caused by scalin9 since xl

and x2 have vastly different units and values.
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TVO-SPWE PR08A81LITY PLOT

TRuEunLuEoF xl: 1.000E-08
TRuEufulEoFx2: S.000E-07
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003M0 0.8ss0 0.9890

DATA SET NO. 1
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MTA SHf MO. 2
8fUlPLEMEANOFXl :
WIPLEMERNOF X2:

SIWPLEUARIANCEOF Xl :
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SAIIPLE COVARI AWE :
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1.00ss-08
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4.913E-23
S.5S4E-19
-S.196S-21
-9.94BE-01
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9.99DE-09
S.040E-07
7.000S-23
B. WOE-19
S. ODOE-21
.9. S72E-01

89.6419
8. WOE-19 3. WSE-23

Figure 5: Typical Output Information Display

.

.
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Therefore, we can obtain general relative information about

the properties of the two data sets, and directly read the

means and standard deviations (max xl value on the

one-sigma plot minus PI, is 01), but we cannot inter-

pret the correlation of the two variables from this plot.

For that purpose, we turn to Figure 7 which displays the

normalized results. Here we plot

x* = N(X+JX)——

xl -1+
or x: = 01 and

x2-lJ.2x;=~
where al and U2 are the standard deviations of x1

and X2 respectively. Now the two variables are

dimensionless so the relationship between them is more

apparent. In fact, only the correlation coefficient (p) is

available from the graph. Figure 8 shows how different

correlation coefficients affect the orientation of the graph.

Thus, we see that the 01 parameter and 62 Parameter are

highly (but negatively) correlated in data set A (of

Figure 7), but not as highly (and positively) correlated

in data set B. So with one estimator, the estimates are

very highly dependent on one another, but less so with the

other estimator.

.
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IV. SUMMARY

We have shown how to display the statistical information contained

in a Gaussian random vector in two-space. The computer program

ECP2D was developed as a data display/interpretation tool for use

specifically in comparing parameter estimates [7~.
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APPENDIX A

Source Code Listing for ECP2D
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1 SCHAT (TV80LIB,0RDERLIB,STACKLIB,EE, ‘) ZME x%ME B%ME IJZME11193S S 80
~
3 PROGRAM ECP2D(ECPIN,TAPE5 =ECPII!)
4
5 c**************>:**************************************************a
6 C*
7 c* DESCRIPTION
0 c* ~IS rRoGR. p~s ELLIps~ oF coNsTANT LI~LIHooD
9 c* FOF&TWO GAUSSIAN lL4NDOPiVARIABLES. A WRITE-UP ON THE
10 c* THEORY OF OPENATION IS AVAILABLE IN A SEPARATE REPORT.
11 c*
12 c* AUTEOR -- SPEVE AZEVEIIO L-156 X2-8538
13 c*
14 C* AVAII.JiBiLITY-- CDC 7600
15 c*
16 C* EXECUTE LINE -- XECP2D / T V
17 C*
18 c************************************************************x*w***
19 c
20 C.. ...MN - MAX NUMBER OF M!24SUREMENTS
21 C.. ...ML - M/W IWMBER OF CONTOUR!5TO PLOT
22 c .....rm - MAX Nt.i.iEROF DATA SETS TO PLOT
23 C.. ...NP - NUMBER OF POII,WSTO PLOT ON EACH ELLIPSE
24 PARAMETER (MN=1OO,ML=144,MH=IO)
25 PARAMETER (NP=1OO)
26 PARAMETI EN (FI=3.1415926535898)
27
28 DIKENS1ON Xl (MN,ME),X2(MN,MM)
29 DIMENS1ON X(NP,ML,MTi),Y(NP,ML,MPl)
3(3 DIMENSION PR(ML)
31 DIMENSION XE1(MM),XJL2(MM),SI(MM),S2(MM)
~~ DIMENS1ON WX(NP),W(IW)
33 c
34 c************************************************m*******w
35 C* PROGRAM INITIALIZATION
36 C**sa:***%***************a:SS***********%x**************%*****
37 c

CALL fXIANGE(”+XECP2D”)
% c
40 C .....INITIALIZE PLOTTING FOR FR80 105NM FICHE (BUT KEEP FIBST)
41 c
42 CALL FRWID(9HF1LM-ONLY,O,l ,0)
43 CALL KEEP89(1OH ECPS0,3)
44 CALL DDERS(-1)
4s CALL SEPCH (7.,42.,1,0,1,0)
46 WRITE(lOO, ’’(20X,”’’TWO-SPACEPROBABILITY PLOTm”)’)
47 c
48 C .....COMPUTE POINTS OF A CIRCLE (RADIUS=l)
49 c
50 DLTA = 2.*PI/(NP-1)
~~ ALPHA = 0.
52 DO DL02 I=l,NP
53 W( I) = COS(ALPHA)
54 WY(I) = SIN(ALPHA)
55 ALPHA = ALPHA + DLTA
56 INA32 CONTINUE
57 c
58 c****************s****%***************************w*****m
59 c* READ THE INPUT FILE (ECPIN)
60 C***************%******************************************

.



-39-

●

✎

61 C
62 C .....LINE 1. READ NUFS3EROF DATA SEI’S●D CONTOURS
63 C M - NUMBER OF DATA SLTS
64 C - IWJMBEROF CONTOURS
65 c L& - LABEL FOR X-A.?(IS
66 c LBLY - LABEL FOR Y-AXIS
67 REAI)(5,”(215,2AIO)”) M,L,LBLX,LBLY
68 IF (M.C7.MU) TEEN

WlITE(59,’(IX,/,”” ERROR--TOO MANY DATA SETS; M = ‘“,15)”) M
% CALL EXIT(1)

ENDIF
u IF (L.CP.ML) TEEN
73 WRITE(59,”(lX,/,”n ERROR--TOO MANY CONTOURS: L = ‘“,15)’) L
?4 CALL EXIT(1)
75 ENDIF
76 C
77 C..... LIIVE2. READ TRUilVALUES OF Xl AND X2
78 c ITFLAC = 1 IF TRUE VALUE 1S KNOWN
79 c
80C
81 c
82
83
04
85
86

@ IF NOT
XIT - TRUE VALUE OF Xl

- TRUE VALUE OF X2
READ(5, ”(12,2E16.7)”) ITFLAC,X1T,X2’I’
IF (lTFLAG.NE.0) THEN

mITE(100,’(/,22X,’”~UE VALUE OF Xl : ‘“,E12.3)”) XIT
WRITE(lOO,”(23X,’”T’RUE VALUE OF X2 : “9$E12.3)’) X2T

ENDIF
87 C
88 c .....LIITE3. READ CONTOURPROBS. (BETWEEN 0. AND l.); SAME FOR EACH DATA S~
89 READ(5,’(1OF6.4)”) (PR(I),I=l,L)
90 URITE(lOO, ”(~,18X,a”PROBAJ31LITYVALUES OF CONTOURS’’)’)
91 WRITE(lOO, ”(10(F6.4,2X) )“) (PR(I),l=l,L)
92 C
93 DO DL1O K=I,M
9+ c
95 c .....NEXT LINES. READ DATA SETS
96 C MP = 0 IF RAW DATA INPUT
97 c 1 IF ONLY X-MEAN AND COV. MATRIX INPUT
98 C xv - NO. OF SAMPLE POINTS (IF MP=O)

READ(5,”(12,15)”) MP,N
1:: IF (MP.IM2.1) THEN
101 READ(5, ”(5E16.7)”) XE1(K),XE2(K),CI !,C22,C12

‘“ 1’92 N=O
103 IF ((C11*C22).LT.(C12*C12)) THEN
1(?4 WRlTE(59,m(/”m ERKCX--COV MATRIX WI’ POS DEF; SEI’*’”,15)”) K
105 CALL EXIT(1)
106 ENDIF
107 ELSE
108 IF (N.LT.2) TNJ3N
109 WRITE(59,U(/”” EiWtOR--NOTENOUCB DATA; SEI’~“m,15)’) K
110

●

CALL EXIT(1)
111 ENDIF
112 READ(5, ”(2E16.7)”) (Xl(I),k2(l),I’1.N)
113 c
114 c .....CALCULATE WLIWLE MEAN, COVARIANcE mmIx, AND W-MIN VAL=

● 115 c
116 XEI(K)=XE3(K)=C1 1=C12=CZ2=0.
117 xrm:l=xlwl=xl(1)
118 XMX2=XMN2=X2( 1)
119 DO DL91 I=l,N
120 XEl (K) = XE1(K) +X1(I)
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,!24
,25
,26
,27
28
29 DL81
30 c
.31
.32
,33
,34
,35
,36
,37
i38
:39
\40
141
142
143
!44
145
146
147

IF

IF

XE2(K) = XE2(K) +=(I) -
C1l = Cll + (X1(1)*X1(I))
C22 = c~2 + (X2(1)*X2(I))
C12 = cl~ + (xl(I)*~(I)) .
IF (X1(I).CI’.XHX1) XMX1=XI(I)
IF (X1(I).LT.XNN1) XMNI=X1(l)
IF (X2(l).Gr.XMX2) XIW2=X2(I)
IF (X2(I).LT.XMN2) XMN2=X2(1)
CONTINUE

Cll = (cl] - (XEl(K)*XEl(K)/N))/(N-l )
C22 = (C22 - (XE2(K)%XE2(K)/N))/(1’bl)
C12 = (C12 - (XEl(IC)%XF22(K)/N))/(N-l)
XEl (K) = XEl(K)/N
XE2(K) = XE2(K)/N

ENDIF
(C1l.l.E.O.) THEN

WRITZ(59,’(/””ERROR--Xl VARIANCE NEC OR 0; SET s“”,15)”) K
CALL EXIT(I)

ENDIF
(C22.LE.0. ) THEN

WHITE(59.”(/””ERROR--X2 VARIANCE NEC OR 0: SET U-..15)’) K
CALL EXIT(1)

ENDIF
St(K) = 1.A%2RT(C11)
S2(K) = 1./SQRT(C22)
CORCOEF = S1*S2*C12

148 C
149 c.....DIACONALIZE (IWI’ATE)THE MATRIX
150 C
151 IF
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

(C12.EQ.O.) TEEN
TXETA = 0.
ELSE
IF (GI1.EQ.C22) THEN

IF (C12.LT.0.) THEN
THETA = -Pi/4.

ELSE
THETA = PI/4.

END IF
ELSE
THETA = .5*ATAN(2.*C12/(CII-C22) )
IF (C1l.LT.C22) TEEN

IF (THETA.LT.O.) TKEN
THETA=’IW71’A+P1/2.
ELSE
THETA = THIWA - Pi/2.

ENDIF
ENDIF

169 EITDIF
170 ENDIF
171 c
172 ~)SCR = SQiYT((C1l-C22~**2 +’4.*C12%C12)
173 = (cll+c22+DIscR)/2.
174 D2 = ft311+cz2-DIscR)/2.

175 IF (D2.LT.O.) D2=0.
176 C
177 C . . . ..COMPUTE A CONSTANTS
178 C
179 DIS = SQRT(DI )
18@ D~s = SGRT(D2)
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181 ~c s cos(mA)
182 ~~ = sIN(~~A)
183 Al1 = DISWEC
184 A12 = -D2SWHS
1m A21 = DIS$WBS
186 A22 s D2s~c
187 C
188 C.....WRITE TBE INFORMATION INTO THE PL(YI’FILE
l~$ic
1?@ WRITE(leO,’’(//,””DATA SET NO. ‘“,12)9) K
191 WRITE(ICN3, ”(22X,””SAMPLEMEAN OF Xl : ●D,E12.3)”) XE1(K)
192 ~ITE(lOO, ”(2~,””SF~LE MEAN OF X2 : ‘-,E12.3)”) XlU(K)
193 WRITE(lOO, ”(18X,””SAMPLE VARIANCE OF Xl : ““,E12.3)9) Cll
194 WRITE(106, ”(18X,’”SAMPLE VARIANCE OF X2 : “,E12.3)”) C22
195 WRITE(lOO,’(22X,””SAMPLE COVARIANClt : ““,E12.3)”) C12
196 WRITE(lO@, m(16X,”’’CONRELATIONCOEFFICIENT : “m,E12.3)”) CORCOEF
197 THETA = ltW.*TJilTI’A/PI
198 WRITE(lt30,FlQ)TB~A
199 F10 FORMAT(’ ANGLE OF MAJOR AXIS FROM Xl (DECREES) : ‘,F8.4)
mo WRITE(lOO, N(17X,’’”DIACONALIZED VARIANCES : ‘“,2E12.3)”) DI,D2
201 c
2i?2c.....COMPUTE ELLIPSE CURVES
203 C
z~.~ DO DL04 J=I,L
2@5 ARG = -2.*ALoC(l .-PR(J))
206 B= SQRT(ARG)
207 C
2t)8 DO DL03 1=1.NP
209 X(I,J,K) = All*B*WX(I) + A12*B*WY(I) + X’El(K)
210 Y(I,J,K) = A21*WWX(I) + A22*IMWY(I) + XE2(K)
211 IF (X(I,J,K).CT.XMX1) XMX1=X(I,J,K)
212 IF (X(I,J,K).LT.XMH1) XIIDV1=X(I.J,K)
213 IF (Y(I,J,K).CT.Xlk”) ~lX2=Y(I,J,K)
214 IF (Y(l,J,K).LT.XMN2) XMN2=Y(I,J,K)
215 DL03 CONTINUE
216 DL04 CONTINUE”
217 DLIO CONTINUE
218 C
219 c***~**************************************S*****W~**~
220 c* PLOT THE RESWLTS
221 c*************g***********************%********************
222 c
223 CALL FNJWE
224 IF (ITFLAC.NE.0) THEN
225 IF (XIT.CT.XMX1) XMXl=XIT
226 IF (XIT.LT.XHN1) XNN1=XIT
227 IF (X22.Cl’.XI’IX2)XMX2=X2T
228 IF (X2T.LT.XMN2) XMN2=X2T
229 ENDIF
23@ Arlx= .05*(Xl111-XMNl)
m 1 AMY= .05*(xrlx2-xl’112)
232 XHxl = XNxl + Am
233 XMii1 =XMN1-AMX
234 XrIx2= XMX2+ AMY
233 XMN2 = XMm - Am
WJfj c
237 CALL MAPS!.XMNl.XMXl,k~2._, .1,.999,.15,.999)
238 IF (ITFLAG.NE.0) CALL POINTC( 1H*,X1T,X22,1)
239 C
240 NCHAR = lHA
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241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
283
2Ei1
282
283
284
285
286
2s7
am
289
290
291
292
293
294
295
296
~+7
298
~Q9
Ox?

c

DL05

DL06
c

FO

c

DO DL96 K=l,M
CALL POINTS (Xt(l,K),)s2(l,K),N)
CALL LiNEP(XEl (K),XMN2,XEl (K),XMX2,4)
CALL LII?EP(XMN1,XE2(K)*XMX1,XE2(K) ,4)

DO DL95 J=l,L
CALL SEPCRT(X(l,J,K),Y(l,J,K),O, 177713)
CALL TRACEC(JWHAR,X(l,J,K),Y( l,J,K),NP)
CONTINUE
NCKAR=NCHAR+ 100WWOO9OOO??OOOWOD
CONTINUE

CALL SEPCE(42. ,3.,1,0,1,0)
URITE(1OO.FO) L13W
CALL SETCH(l .,42.,1,0,1,1)
WRITE(100,F@) LBLY
FORMAT(A1O)
CALL FRAME

c**********************'*%********************-**********
c* COMPUTE THE NORMALIZED RESWLTS
c**:k**s***************::%*****%****s****%*******************
c

XMN1=XMX1=XMN2=XHX2=0.
c

DO DL22 K=I,IIC
DO DL21 J=l,L
DO DL20 l=l,NP
X(I,J,K) = Sl(K)*(X( I,J,K)-XElfK))
Y(I,J,K) = S2[K)*(Y( I,J,K)-XE2?(K))
IF (X(I,J,K).~.XNXl) XMX1=X(l,J,K)
IF (X(I,J,K).LT.NYNI) XMN1=X(I,J,K)
IF (Y(I,J,K).CT.XMX2) XMZ2=Y(I,J,K)
IF (Y(I,J,K).LT..XMN2) XMN2=Y(I,J,K)

DL20 CONTINUE
DL21 CONTINUE
DL22 CONTINUE
c
c************::*x******x***********************m*w********
C* PLOT THFcNORMALIZED RESULTS
c************x************%%******%***********************
c

Apf)(, ,~5*(~~-~1)
AMY= .05*(xmx2-xmN2)
XMXl = XFIXl+ AMX
XmNl = XmNl - Am
Xmx2= xmc2+AI’rY
XMN2=XITN2-AMY

c
CALL MAPS(XMN1,XMX1,XM172.XMX2,.1,.999,.15,.999)
CALL LINEP(O. ,XMN2,0.,WX2,4)
CALL LINEP(XMN1,O. ,XMX1,O.,4)

c
NCWR ❑ lHA
110DL25 K=l,M

c
DO DL24 J=I,L
CALL sEI’CIIT(X(l,J,K),Y(l,J,K) .0,1777B)
CALL TNACEC(NCBAR,X(l,J,K),Y( l,J,K),NP)

DL24 CONTINUE
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3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

‘3

)1 NCHAR=IVCEAR+1690000000000W00@0B
12 DUN CONTINUE
)3 c
)4 CALL SIH’CIl(42.,3.,1,0,1,0)
)5 WKITE(1OO,F1) LBJJ(
)6 CALL SETCH(l .,42.,1,0,1,1)
)? WRITE(100,Fl) LllLY
)8 F: FOIUIAT(AlO,”- NORMALIZED”)
)9 c
@ c*****************************************%**x*********M**
1 C* END PLOWING -- CHECK THE TII~, THEN QUIT
2 c**********************%;:*::%*%%****************************
3C
4 CALL TICHEK(IT1,1T2)
5 IT2=ITWIOWMW0
6 WRITE(59,FM1) IT2,1TI
7 FMl FoRMAT(/*16,Ale)
8C
9 CALL EXIT(1)
!0 END
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APPENDIX B

Proof of Equations 6 and 7

.



-45-

Problem: Transform a known 2 x 2 symmetric matrix (C) to a diagonalized

‘2form using an orthogonal transformation; i.e., find dl, d;, and 9 from

the equations:

g = SDS-l

-[ .

d2
-

1°
where D=

O d;

[1Cll c12
~.

c12 C22

By simply multiplying through the right side,

Cll
= d; cos20 + d: sin20 (B-1)
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C22 = d; sinze + d: cos20

C12
= sine cose (d: - d:)

Now by subtracting (B-2) from (B-l):

Cll - C22
= (d; - d;) (cOsze - sinze)

= (d;- df) Cos 20

(B-2)

.

(B-3)
,

(B-4)

then (B-3) becomes:

= (sif’zZe)(&)(c,l - C22)

which gives
.

.

tan 20 =
2C12

c11 - C22
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.

7

2C1~
and e= 1/2 tan-l

Cll - C22

Now, summing equation (B-1) and (B-2), we get

Cll + C22
=d;+d;

So, with (B-4) and (B-6)

‘i
I

=
dz

2

Cll - C22
(Cll + c2z) : cos 20

2

But, from (B-5)

cos 20 = cos[ta#(c:c,2c22)]

Cll - C22=

(B-5)

(B-6)

(B-7)
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So,

~2
11

1

= Cll + ’22: (c,, - C22)2 + 4C:2

d2
2

22

Equations (B-5) and (B-8) are equivalent to equations (6) and (7). This

can also be proved by noting that d; and d; are merely the eigenvalues

of! and that the columns of S are the eigenvectors. Then, by solution

of the eigenvalue-eigenvector problem, we achieve the same results.

(B-8)

When evaluating these equations by computer, we must be certain that the

eigenvalues correctly correspond to their associate eigenvector.

Otherwise, a 90° shift of the ellipse may result.


